

HUB: All Your Kitchen Appliances in One Device

Rotimi Solola: Senior Thesis 2015

To Design for Longevity, Products should be:

Making products consumer serviceable gives people the ability to service their products when they stop working over a period of time.

Economically Profitable:

Allowing for Part-share modularity creates an ecosystem that means consumers can buy only 1 base unit (HUB) but attach an expanding amount of sub units to leverage the same internal components.

Consumer Desirable:

Creating a high-end and desirable product that appeals to target consumers. In this case the target consumer is one who has a small space living situation

Target Consumer

Men & women that live either alone or with a significant other or roommate

Small Space Living:

Because these individuals are independent, they don't require a lot of living space.

City Dweller:

Mid—High Income individuals with a desire to live inner city where prices are high, & space is limited.

A product designed for longevity has to last for generations, so the design should as well.

Efficient:

The form should respect the function.

Approachable:

The complexity of product repair can be very intimidating to consumers. So the form of this product should be inviting.

Now the fun starts:

In order to design a system that allows consumers to better understand how to repair their products, I first needed to understand the current process for fixing a product is. I started with a fairly simple device (blender) and through research, product analysis, and reverse engineering, I mapped out the process one would take to diagnose and fix a blender (Figure A).

Based on what I learned, I was able to re-map the process to create a more user-friendly approach to diagnosing and fixing a blender. This approach (figure B) directly influenced the functional design of the HUB unit.

What I learned:

It's not so much about learning how to fix a blender, it's about realizing how many dead ends are built into many consumer products. All it takes a little investigation. Knowing why and how things are a certain way allows one to make meaningful changes.

Figure A (the current process) was overcomplicated and filled with dead ends, while figure B was more straight forward and to the point.

I wanted HUB to be straight forward and to the point.

Designed to be versatile, economical, & mass appealing.

Heating Contact Motor

Recessed Control Dial:

Allows external housing to slide off without the unnecessary removal of a protruding knob.

Plug Port
uses a standard AC
chord— convenient for
both International use

Motor cooling vents
designed to be uniformed
& visually balanced

Lock Latch
ergonomic
handle unlocks
the outer
housing

Safety: prevents users from

opening HUB without 1st unplugging it

