Lina Trulsson
Industrial Designer MFA
+46 (0) 733 54 54 31
linatrulsson.com

ECMO
Last chance treatment in the event of respiratory failure

Lina Trulsson
APD2 S1D201 Degree Project
JANUARY - JUNE 2016

Umeå Institute of Design
MFA Advanced Product Design
ECMO
Extracorporeal Membrane Oxygenation

ECLS
Extracorporeal Life Support

... means that there is a membrane outside of the body that provides the patient with oxygen

ECMO is indicated in severe respiratory failure

The survival rate is 60-70 %

ABSTRACT
ECMO - Extracorporeal Membrane Oxygenation

ECMO is out of body oxygenation through an artificial lung in the event of severe respiratory failure where conventional care is not enough. Today the treatment is complex, overwhelming and it is hard for staff to get a good overview. The usage of ECMO is increasing steadily and therefore the treatment needs to be simplified, better structured and fit the right context to become accessible to a larger scope of patients. With a user centered design approach and ethnographic research the ICU environment was studied in two hospitals in Sweden to gather information about ECMO. Interviews were held with doctors, nurses and perfusionists (responsible for the ECMO machine).

The creative work consisted of brainstorms with both designers, clinical experts and engineers. Mock-ups were built combined with sketching and feedback-sessions with clinical experts to create three different concept directions. One direction was taken further due to compactness, flexibility and integration.

The final concept is called Adoxy and creates one compact ECMO system that reduces cables and hides connections for an easier usage and cleaner appearance in a complex environment. The oxygenator (disposable part) placement is easier and more hidden for safety and usability.

The final product comes with two different carts, a ward cart, used internally in the hospital and an transportation cart, used outside of the hospital. The ward cart enables the staff to a safer internal transportation by connecting the ECMO to the patient bed. The transportation cart is lower in profile to fit in an airplane or helicopter.

Priming possibilities of the machine are designed for complete integration to be able to use when needed, otherwise hidden. There is a bigger screen on the ECMO for visibility but it is also connected to a general monitor that will show alarms when they occur. This is to give the nurses a chance to easier prioritize work from a distance and to get a better overview.
BACKGROUND

ECMO - Extracorporeal Membrane Oxygenation

For this project I have worked and collaborate with the ECMO Center at Karolinska University hospital in Stockholm to find interesting design opportunities in the field of ECMO treatment and its surroundings. Patients come from all over Scandinavia to this specific department for a last chance to survive, both newly born and adults. A common practice in the hospitals now is to use the ECMO machine as a last effort for more severe lung and heart diseases. These patients are usually diagnosed with a less than 20 percent chance of survival. The ECMO machine oxygenates the blood outside of the body, through a artificial lung, giving the lungs and heart a chance to rest and heal. The treatment is considered to be more gentle than respiratory therapy and gives the patient more time to recover. The survival rate is today 60-70 %.

My hypothesis is therefore that the ECMO treatment would have far greater impact and getting more patients to benefit from it, if the current treatment was simplified, more user friendly and therefore cheaper. The current treatment is a very expensive treatment, about 100,000 SEK per patient per day, this is because the need of ten full time employed workers (physicians and nurses) per patient.

The treatment was brought to Sweden from the US by the Swedish physicians Kenneth Palmér, Inger Mossberg and professor Björn Freckner. At the ECMO Center in Stockholm, more than 900 patients have been treated since its inception in 1987. Today the survival rate on the ward is 75 %. In ten years the number of ECMO Centers in the world have more than doubled, and so far more than 60,000 cases are registered. So there is no doubts that more centers are needed and that the treatment will grow in the future.

ECMO is a shortening for Extracorporeal membrane oxygenation or extracorporeal life support (ECLS). Extracorporeal means that something is happening outside of the body, and in this case ECMO is a technique providing both cardiac and respiratory support to people whose heart and lungs are unable to provide the right amount of gas exchange to sustain life. The goal is to give the heart and lungs the time needed for self healing. Today the distribution of patients on the ward is 40% newly born (neonatal), 10% children (pediatrics) and 50% adults.

Conditions

Most common conditions for patients at the ECMO Center are the following:

Adults:
Sepsis (severe blood poisoning) or Pneumonia

Neonatal:
Congenital diaphragmatic hernia and Meconium aspiration (MAS)
ECMO-Center, Stockholm

The first study visit at ECMO Center was in September 2015 where I was able to see the ward for the first time. Here, I was able to shadow an internal transportation of a patient for an x-ray.

Two additional visits have then been done to do interviews with doctors and nurses to understand the ECMO machine, the users and the environment. I could also take part of an internal training session that was held to go through problems that had occurred with one of their ECMO machines. These internal sessions are common at the ECMO Center, to get updated on new machines and bring up topics for discussion.

Maquet Academy, Rastatt

I was invited to visit Maquet in Rastatt, Germany, to meet with clinical experts (perfusionists), R&D and the Software team. The objective was to get in contact with the right people for later on in the project.

Norrlands University Hospital, Umeå

When the ECMO Center in Stockholm is filled to capacity, patients will be sent to nearby ECMO Centers or Thoracic ICU’s. This happened in February of 2016, when the Thoracic ICU at Norrlands University hospital (NUS) received one ECMO patient. I had the chance to visit and ask questions to doctors and perfusionists. The hospital in Umeå usually have 5-10 patients per year on ECMO.

Intensive care ward
Parkview Hospital, Indiana

A short visit was arranged during December 2015 at the Intensive care Unit in Parkview Regional Hospital in Fort Wayne, Indiana. Here I got to talk to one ECMO nurse and one doctor. At the time they did not have any patients on ECMO, but they took out the machine so I could study it.

1. Maquet Cardiohelp in storage room
2. Internal training session
3. ECMO machine in Indiana
4. Levitronic Centrimag
5. Infusion pumps with medication
6. Rollerpump and neonatal oxygenator
STAKEHOLDERS
Contacts during the project

EXPERTS
ECMO Center, Stockholm

Doctor
Michael Broomé
ECMO Nurse
Per Åberg
ECMO Nurse
Susanne Lilja
ECMO Assistant Nurse
Katja Andersson

EXPERTS
Maquet Academy

Perfusionist
Stefan Koch
Perfusionist
Frank Stickel
R&D
Alexander Hegel
Software team
Heiko Schmidt

PRIMARY USERS
Cardiac & Thoracic ICU, Umeå

Doctor
Micke Svanström
Perfusionist
Micael Appelblad
ICU Nurse
Gabriel Bostrom
ICU Nurse
Jimmy Helm

SECONDARY USERS
Patients and their relatives

Patient
Lars Andersson
Relative
Sanna Wikström
Relative
Helen Ahlgren
Relative
Maria Hult
Relative
Ann-Louise Larsson
At the ECMO Center there are specially trained doctors, nurses and assistant nurses to handle everything with and around the ECMO treatment. I had the chance to interview Michael Broomé who has been working as a doctor at the ECMO Center for 10 years.

Doctors

Michael explained to me that there are two different types of ECMO devices, defined by their manufacturing. These types are; the closed construction, which is a more compact and simpler solution due to less complexity (Maquet’s Cardiohelp); and the open construction, which is free standing components connected to form an complete ECMO system (Lactotronix Centrimag and Stockert, S5).

The benefits for these two types are that the closed version is more suited for Thorax ICU’s that have less patients every year because of an easier and more compact solution, while the open construction has the flexibility to be more custom made and single parts can be replaced more easily.

At the ECMO Center in Stockholm they today prefer to use the open construction to have the flexibility and the possibility to change components when complications occur. Michael says that the challenge is to change the right part during an emergency situation and also points out the pressure of taking the right decision in an extremely stressful situation is sometimes hard.

EXPERTS

Staff at ECMO Center

Michael Broomé

Age: 54
Profession: Doctor at ECMO-ICU, Stockholm
Experience (ECMO-ICU): 10 years
Experience doctor: 25 years

“It is motivating to help seriously ill patients, intellectually challenging to understand severe illnesses and exciting.”
Lars Andersson
34 years
ECMO Patient, June 2015
Lars was on ECMO for 7 days in Stockholm, he suffered from Antisynthetase syndrome, which is an autoimmune lung disease. During his time at the ICU in Skövde Lars experienced the Intensive Care Syndrome, which in his case was hallucinations. He describes the feeling as being in a nightmare where he created a world that was very dark. The hallucinations stopped when he was put on ECMO. During his ECMO treatment Lars was awake the whole time. A few times he had the strength to sit up. He lost the grasp of time and describes his time in the ICU as a movie, where he can only remember fragments of what happened.

“I was lying in bed and stared at the ceiling, I saw some stains and asked what it was. It was blood…”

Helen Ahlgren
Daughter Linn
10 years
ECMO Patient, November 2014
Helen is mother to Linn who was an ECMO patient for 6 days in November 2014. The family was on their way back on a plane from a vacation in the US when suddenly Linn’s lungs stopped working. A female doctor from Uganda made the plane do an emergency landing in Ireland. Linn was taken to a hospital and after a day they realized that the ventilator was not enough for Linn. The ECMO-team in Sweden then flew over and brought Linn back to Sweden to treat her at the ECMO Center. She was in such bad condition that they predicted that she would be on the ECMO for 5-10 weeks. But after only 6 days Linn could be taken off the ECMO machine. Afterwards they know that it was five very aggressive bacterias that had attacked Linn’s lungs.

“It was a nightmare to think about how to bury Linn & what kind of music we should play in the church.”
This is Linn in the ward in Stockholm. To her left you can see the ECMO machine with a bigger monitor. This one is connected to a dialysis machine that you can find close to the ECMO. Above the patient bed is a general/patient monitor, showing blood pressure and pulse of the patient, also one pressure from the ECMO is displayed on this monitor because of lack of space on the ECMO screen. Right above the bed is a feeding pump providing Linn with nutrition. On the right side of the bed is the ventilator.

1. Dialysis machine
2. ECMO
3. General monitor
4. Feeding pump
5. Ventilator
What if the treatment could be simplified and therefore more accessible to a larger scope of patients?
CONCLUSIONS
Area of Interest

Problems that have been spotted and highlighted during the research, most of them, fit into these three categories:

- **Equipment overview and structure**
- **Cable and tube management**
- **Mobility and flexibility**

See the previous page to see the underlying problems leading to the three bigger categories. Some of the problems fit in two of the categories.

Area of interest

These categories of interest together with a focus on the growing patient group, adults, could lead to an interesting project.

In this extreme environment, where seconds matter during an emergency, we can’t have the problem of bad overview and an unstructured environment. I therefore see an importance of improving this aspect of the treatment to get a better structure and overview of the equipment involved in the ECMO treatment.

The more simple circuit the better, and simplify and structure is definitly key words while talking about the cable and tube management. The more simple solution, the less risks of complications.

Mobility and flexibility is important both internally, when patients need to be transported to an x-ray or surgery, and also externally when the ECMO team is picking up patients remotely and bringing them back to a hospital that can provide ECMO. Mobility concerning how easy the machine is to move together with the patient and additional machines, and flexibility refers to the ability to change parts needed during an emergency situation. For example changing the oxygenator due to clogging.
WHAT I WANT TO DO
Defining the project

WHAT
- Re-design and simplify handling of the ECMO machine

WHY
- To make the treatment accessible to more patients that suffers from severe respiratory failure

WHO
- For staff handling machine (ICU Nurse, Doctors, Perfusionists) and adult ecmo patients (growing target group)

WHERE
- During treatment in the ICU ward but also during the transport of patients internally in the hospital

GOALS & WISHES
Defining the project

Goals:
- simplify handling of machine during priming, in ward and internal transport
- reduce/hide cables and tubes of machine
- create a ECMO machine enabling the staff to a faster and more accurate decision making through a better structure and overview
- safer internal transportation of the patient (avoid ECMO in bed or rolling cart beside the bed)

Wishes:
- simplify handling of machine during external transport outside of the hospital
- create a solution that helps the patient with ambulatory movement
- a solution that also is suitable for neonatal and pediatric patients
- an easier and more intuitive and userfriendly interface
- involve the relatives in the treatment in whatever way they are capable
BRAINSTORM

Three different sessions

Group sessions

Two different group brainstorms were put together to ideate on the three areas of interest:

- Cable and Tube Management
- Structure and Overview
- Mobility and Flexibility

The first session was together with my family, containing medically trained dentists and an electrotechnology engineer. The second session was held with industrial designers at Umeå Institute of Design, all familiar with my research around the ECMO.

The same stimulus material was provided the both groups. To get the teams to think outside of the conventional ECMO treatment, image boards showing other brands, not connected to medical products, were provided such as: Apple, Tesla and Disney.

Individual sessions

Together with other designers smaller one-to-one sessions and brainstorms was arranged to ideate more freely on ideas. One of these sessions were with a doctor from ECMO Center, where a feedback meeting was combined with brainstorming.

How would Disney design an ECMO machine?
THREE CONCEPTS

Different form factors

To get a quick understanding of the volumes I was working with, full scale mock-ups in foam core with a wooden base was created. Components such as ECMO, water heater and disposable parts were made in foam core.

Rules I had to follow regarding the ECMO was for example that the disposable parts (artificial lung and pump) could not exceed higher than the existing height of the Cardiohelp. Therefore, a taped version on a big board was created and used as a reference. The rule is to have the lung beneath the patient for improved safety.

The three concept directions were built as mock-ups to try out the four different scenarios (priming of machine, in ward, internal and external transportation). An ICU hospital bed with the right measurements was illustrated using tape-on the wall for reference.
Another feedback session was arranged where I had the opportunity to invite staff from the nearby hospital, NUS, to take part in a meeting at the school, Umeå Institute of Design. The benefit was to show them 3D mock-ups that they could interact with. Full scale sketches and complimentary smaller sketches were shown to describe the concepts.

The outcome of the meeting was clear that they liked the second concept because of the flexibility and mobility. Other features that they liked were: integrated hand crank, automatic connections and integrated sensors for the oxygenator.

During discussions around the GUI it was clear that they preferred a dark background rather than a white background like they have today. The contrast is bigger using a darker background and more comfortable light in a dark patient room during the night.

Concerning the monitors size, they thought the bigger the better but it was also a question about balance of the machine. So discussion of having a bigger screen on the ECMO or connecting it to a patient monitor was brought up. The outcome was, equal to the discussions with ECMO Center, that a smaller machine with a connection to a bigger monitor during alarms would be the most beneficial concerning space management.
The last feedback session was together with Maquet, Rastatt, where I got to present my three concept directions to clinical expert Frank Stickel through a skype meeting.

The outcome of the meeting was that all the three directions were interesting but he especially liked the legs on concept 1 because of the possibility of getting closer to the product and screen. That is a problem today.

We also discussed that todays monitors and connected systems are not compatible between different brands. But I should not focus on that in this situation. My focus is to create the best possible solution for the user.

After hearing all stakeholders opinions, ECMO Center, Maquet and NUS, pros and cons were listed for every concept to find a direction to move forward with.
SELECTED CONCEPTS

Development of handles, screen and priming possibilities

The selected concept needed development and decision making concerning placement and hierarchy of handles and big screen versus a smaller screen on the ECMO.

Mock-ups were adjusted and tested to find the most intuitive way of placing two handles, one for moving the whole cart and one for removing the ECMO from the cart and placing either closer to the patient or placing in the external transport cart.

Also placement of the integrated handcrank needed to be settled, but this was more constraint to technical possibilities.

An integrated priming IV pole was considered that could be pulled up only when needed during the set up of the machine.
A quick exploration of the Maquet product line was studied to get a understanding of where they are and where they are heading. The product line is a wide range of products that are more or less leaning towards a technical or designed side. I want to aim moving the ECMO towards the designed area of the matrix, bringing in some new materials to change the appearance.
CAID MODELL
Development and exploration

A lot of the form exploration was done in CAID to get accurate shapes and to have the possibility to print form scale mock-ups. The form exploration on the next page is the process I went through, from left to right, up to down, where the concept function was iterated in the middle. The attachment functionality changed from rolling over the bed and the ECMO being inside of the bed to being attached from the backside instead and having the possibility to be lower than the patient at all times. Therefore the change in the shape.

The changes involve a placement change for the water heater, instead of being in the back of the machine, it is placed under the ECMO and the volume is distributed differently. This is beneficial for a lower center of gravity for the machine. The water heater is also more accessible for the user from the front, when the water needs to be changed.
The final CAID model was created in Alias Automotive and had to be divided into 27 pieces to get a ready file for the milling machine. These pieces, made out of polyurethane foam, were glued together and additional parts were 3D printed, in both plastic and plaster, and laser cut to build the final model. The physical model was made to have a physical representation of what the final design would look like, not a functional model, only for visual purpose.

The wheels were provided kindly by Tente AB and tubes and other disposable medical equipment from Maquet Sweden AB.
Compact ECMO System
for last chance treatment in the event of respiratory failure
OVERALL SYSTEM
Simplicity, integration and small footprint

Adoxy is a compact and complete ECMO system where emphasis is put on simplicity, integration and a small footprint.

The vital components for an ECMO (ECMO, water heater, oxygenator and a gas blender) were combined into one product to optimize space and clean up the appearance, thereby getting rid of unnecessary tubing and connections that instead could be integrated in the shape. The machine needed simplification to speed up processes, especially during setup but also simplicity in interaction with its users.

The name, Adoxy, is a combination of the words “add” and “oxygen”, which resembles the main function of the ECMO system.

The final product is designed to give both the users and the patient a feel of a friendly product that is supportive and comforting in a tough situation. The soft shapes and an emphasis of not looking scary was important for the patient and not the least for their families and loved ones. But still giving a sensation of a reliable and professional machine that gives a good structure and overview for the staff. The machine also had to fulfill the needs of easy shapes, with few split lines and smooth glossy surfaces that easily could be cleaned in this demanding environment.
The multiple screens on the old ECMO, such as ECMO screen, gas blender screen and water heater interface, is now accessible from just one bigger screen for easier interaction and a better workflow for the staff.

The backside of the machine has a storage space for the gas tubes and cords, this is covered by a door to clean up the appearance and keep things neat and tidy. This enabled by changing the volume of the water heater and therefore optimizing space and getting a better structure.

Adoxy compared to the Cardiohelp is more compact and integrated with an overall smaller footprint and fewer loose parts. The reason for aiming towards an even more “closed construction” machine was to simplify the treatment so more patients in the future can benefit from ECMO.
To help the users in their everyday work, especially the nurses, it is important to give them an opportunity to fast understand alarms coming from the ECMO machine. Unfortunately, today’s solution offers a small screen with an alarm system that is not visible enough. It happens that the nurses need to leave their existing treatment of the patient to run to the ECMO’s small screen to see what is alarming.

To address this issue Adoxy is connecting with the patient monitor that is always situated close to the patient bed. When the ECMO is alarming the information will be visible from the bigger screen which is more visible for the nurses. In this scenario the nurse might estimate the severity of the alarm and act according to the situation. Getting vital information from a distance could be life-dependent in a severe situation.
To avoid staff being tempted putting the removable part of the ECMO in the patient bed during internal transportation within the hospital, something had to be done. By offering another solution I hope to avoid these situations that actually could be dangerous for the patient.

A flexible interface was created on the back side of the machine to enable an connection to a patient ICU bed. The reason to keep the connection as flexible and open as possible was to offer a connection that would work for as many beds as possible. There are a lot of different models of ICU beds, therefore a solution that enables imagination and creativity was needed.

The connection is holes in the machine where staff can place straps, use clamps or other inventions to connect the machine to the bed. I have seen numerous home made solutions created within the hospital environment today, and for this specific area I wanted to continue a solution where the staff needs to use their skills to invent new ways. One open solution fits all (with some DIY) instead of one solution for a specific ICU bed. Two different heights are offered for more alternatives.

Placing the ECMO in the patient bed is not safe for the patient and should be avoided.
The oxygenator in Adoxy is more incorporated in the machine to protect this vital part of the ECMO machine better. Instead of being a snap in connection in the Cardiohelp the new machine will have an electrical connection where all the connections come from the back or front. This will enable fewer manual connection, e.g. flow sensor and water connections happen automatically by putting the oxygenator in place.

Reducing steps during preparation of the machine will create less risks of making mistakes and reduce stress for staff since the time to set it up will also reduce.
Adoxy has an incorporated IV pole that will be used during priming of the machine. The handle to the IV pole is accessed from the top and pulled straight up to reach the IV’s full height. It provides two hooks dedicated for the priming bag and one hook on the side for the priming fluid.

On the back side of the machine there is a flip out handle that provides a dedicated space for the extra tubing. A structured and clearer system, where everything has its place, will help in stressful situations during priming and setting up of the machine.

The reason for a telescope IV pole is to make it accessible when needed. The IV pole that is attached to the machine today is filled with things just because it is there at all times; it’s filled with e.g. clamps/measurement scales/board for priming bag etc. These can be structured and placed in better places where they are more accessible. For example there is a space dedicated for clamps right under the oxygenator. The clamps are used to clamp the tubes and the circuit therefor they were put as close to this as possible. The locking mechanism is spring loaded which makes the clamps stay in place but when staff needs one you simply grab and pull for easy access.

PRIMING OF MACHINE
Setting up the machine

Adoxy has an incorporated IV pole that will be used during priming of the machine. The handle to the IV pole is accessed from the top and pulled straight up to reach the IV’s full height. It provides two hooks dedicated for the priming bag and one hook on the side for the priming fluid.

On the back side of the machine there is a flip out handle that provides a dedicated space for the extra tubing. A structured and clearer system, where everything has its place, will help in stressful situations during priming and setting up of the machine.

The reason for a telescope IV pole is to make it accessible when needed. The IV pole that is attached to the machine today is filled with things just because it is there at all times; it’s filled with e.g. clamps/measurement scales/board for priming bag etc. These can be structured and placed in better places where they are more accessible. For example there is a space dedicated for clamps right under the oxygenator. The clamps are used to clamp the tubes and the circuit therefor they were put as close to this as possible. The locking mechanism is spring loaded which makes the clamps stay in place but when staff needs one you simply grab and pull for easy access.
MANUAL HAND CRANK
Usage during emergency situations

In worst case scenario the machine needs to by-pass the main motor due to machine failure, to keep the patient alive a manual handcrank is incorporated in the machine. Today staff needs to move the oxygenator to do this maneuver but the movement will not be needed with Adexy, and therefore precious time will be saved during an emergency situation.

To indicate that the by-pass is working and that the adequate RPM is reached a scale will pop up on the side of the screen. This will in RPM x1000 show a visual indication how fast you need to turn the manual hand crank.
The screen interface has been changed in different ways, first of all in size but also in layout. The screen has gone from a 5.7 inch screen to a 7.5 inch for better visibility, both from close and from a distance. The menu layout has changed from being on the screen bottom to be on the left side. The reason is to get a better workflow for the staff to have room to use both hands during interaction with the screen; the right for the knob, adjusting and finetuning values and the left hand for controlling the touch screen and have the menu as visible as possible for a faster workflow.

In Adoxy all the components needed for an ECMO treatment is accessible from one screen only. This is what you can access from the bigger screen:

- ECMO
- Water heater
- Gas blender

The reason to not go 100% touch screen and still keep a physical knob was because of discussions with perfusionists. They appreciate physical knobs and describes that they get a better feeling using physical tangible buttons and knobs and also there is a strong tradition of using knobs to fine tune measurements on screens and gives a good feel to what you are doing. But the same functions can still all be done through the touch screen.

The background colour is also changed from white to a darker gray to the new machine. Partly because I wanted the style to resemble the Maquet look from the Servo-U, and therefore create a family DNA for Maquet over the globe but also to get a more pleasant screen for the eyes to look at. A darker background is more calm to interact with, especially in a night scenario where you do not want the screens to light up around the patient but still have good visibility for the staff.
EXTENDED SYSTEM
Usage within and without of the hospital

The most vital part of the ECMO can be released from the hospital cart and placed closer to the patient if needed, or attached on a smaller and lower cart that is more suitable for transportations outside of the hospital. The placement of the water heater is different on the two carts. On the transportation cart the water heater is placed on the back to get a lower profile which would be beneficial e.g. in an airplane where the patient can be placed pretty low. The sketch of the transportation cart is not designed and not a focus in this project, but since it has a big part of the whole eco-system thinking of this concept I wanted to include thoughts and rough sketches to clarify the usage.

Sketch of what a transport cart could look like...
“It is very smart to have the possibility to have two different carts optimized for different situations...”

“I like the hand crank, would be great to skip to move the oxygenator during these stressful situations, really good!”

“The oxygenator feels less vulnerable when integrated in the ECMO.”